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Long-time self-diffusion coefficient in colloidal suspensions: 
theory versus simulation 

Hartmut Lirwent and G m g m  Szamelf: 
InstiNUt V W T  TkOEihC be Fysica Rijksunimiteit te Utreeht, Po Box 80.006.3508 TA 
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A b s b a d  The long-time selfdiffusion mefficient of a wlloidal fluid ioleracting Via a Yukawa 
potential and obeying Bmwnian dynamics is calculated by "puler simulations fm d&"t 
parameters of h e  Yukawa pkmial over a huad range of densities. As WO exbeme cam. 
the hard sphere and (he unsaeened coulomb intaaCtion are also included The simulation 
results are compared with different theoretical expressions In gewd. it is found h t  a M e  
l ie  theory that incorporates both the exact &on-time behaviour of the frictim kcmel and the 
hvo-particle dynamics describes the simulational data besr ALSO, simulations and lhe0ne.s for 
the selfdiffusion in hvodisional Brownian Yukawa fluids are compared, where Ihe same 
qualitative behaviour is found 

1. Introduction 

In a concentrated suspension of colloidal particles embedded in a solvent, the long-time 
self-diffusion coefficient of the colloidal particles, D, is significantly smaller than the short- 
time diffusion constant Do. Whereas the latter results h m  random kicks of the solvent 
and is determined in terms of the solvent friction and the temperature, the long-lime self- 
diffusion is strongly affected by the repulsive interparticle interactions. Furthennore, both 
quantities depend on hydrodynamic interactions mediated by the solvent. These complicated 
interactions can be safely ignored if their a g e ,  characterized by a hydrodynamic radius, is 
much smaller than the range of the interparticle interaction. This is the case, for example, 
in highly charged colloidal suspensions which already show a well-pronounced sbuchlle 
even for very small packing fractions. For suspensions whose interactions are dominated 
by excluded volume effects only, however, hydrodynamic interactions are very important. 

Diffemt experimental techniques like dynamical light scattering [I], forced Rayleigh 
scattering [2,31 and fluorescence recovery after photobleaching [4]. have been used to 
measure the long-time self-diffusion coefficient for both charge- and sterically-stabilized 
colloidal suspensions. Recently it was found that the ratio of short- and long-time self- 
diffusion coefficients, D/Do, has a universal value very close to 0.1 on the freezii line 
of a colloidal fluid which constitutes a dynamical phenomenological freezing rule [5]. In 
this paper, we shall focus on simulations and theories for the self-diffusion coefficient D. 
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In particular, we study how D depends on the nature of the interparticle forces and on 
the density of the colloidal particles. Henceforth, we shall not consider hydrodynamic 
interactions explicitly. Then, the short-time diffusion coefficient is given by 
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where q and $0 are the solvent viscosity and friction, respectively, while T is the temperature 
and R the radius of the colloidal particle. On a ‘short’ timescale (which is still large 
compared to that of momentum relaxation of the colloidal particles), the particle motion 
is simple Brownian with the short-time diffusion constant DO. The particle interaction is 
modelled by a painvise Yukawa potential, being the electrostatic part of the familiar DLVO 
potential [6.7] 

V ( r )  = Uou exp[-A(r - u ) / u ] / r  (2) 

where U0 sets the energy and u the length scale. This potential is a good description 
for the interaction of a dilute charge-stabilized colloidal suspensions whereas it breaks 
down for a concentrated suspension where many-body interactions also become relevant 
[SI. The steepness and range of the Yukawa potential depends sensitively on the screening 
parameter A. For A = 0, the interaction is Coulombic, i.e. the system described is a 
classical one-component plasma (om) usually defined with a homogeneous neutralizing 
background, whereas for A -+ CO the interaction becomes hard-sphere-like. Consequently. 
the hard-sphere (HS) and OCP systems are included as Special extreme cases, and the Yukawa 
interaction can also be understood to interpolate smoothly between these two limiting cases 
of hard and very soft cores. 

A systematic study of the long-time diffusion coefficient has only been performed for 
hard spheres. There have been both Brownian dynamics simulations for different densities 
[9,10] as well as theoretical investigations [ I  1-14]. In particular, it was shown [I31 that 
an Enskog-like theory describes !he data well up to high hard-sphen densities. Although 
the study of a Brownian hard-sphere system is useful and justified as a model system of 
statistical mechanics, we emphasize that in a real sterically stabilized colloidal suspension 
hydrodynamic interactions significantly alter the behaviour. This model therefore cannot 
be compared directly with experimental data. This is different, however, for the Yukawa 
potential since there hydrodynamic interaction can be ignored, at least in the weak-screening 
regime. Our studies of a Yukawa system are thus motivated by two different facts. First, 
the model is m m  realistic as regards direct comparison with experiments. Second, more 
fundamentally, it is interesting to study how the self-diffusion is influenced by the ‘softness’ 
of the interparticle interaction. Our work is divided into two parts. First. we present 
Brownian dynamics computer simulation data for the long-time self diffusion in a Yukawa 
system. In particular, the dependence on the screening parameter A is studied. Second, we 
test different theoretical expressions for the selfdiffusion coefficient. To get explicit results 
from such expressions, one usually needs static input data, such as the pair correlation 
function g(r) or the structure factor S(k). Here, all the static input data needed to compute 
theoretical values are also taken from the simulations in order to get a clear-cut estimate 
for the validity of a theory. 

Recently, fwo-dimensional colloidal liquids were prepared by confining charged colloidal 
particles between charged plates [IS]. The Yukawa model (2) remains a simple, though 
approximate, [16,171 description for the interaction of the twc-dimensional interparticle 
interaction. Whereas in a two-dimensional atomic system, the diffusion coefficient is not 
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well defined [ 181, it does exist for a twodimensional Brownian system provided the solvent 
friction EO is finite. This is due to the fact that in a Brownian system the long-time tail of the 
velocity autocorrelation function decays faster than for a corresponding atomic system [ 191. 
In this paper. we also compare simulational data and theories for the long-time selfdiffusion 
for the two-dimensional Yukawa fluid. 

The paper is organized as follows. First, we briefly describe the Brownian dynamics 
simulation method in section 2. Then, we review existing theories in section 3. The 
theoretical results for the long-time self-diffusion coefficient are compared with the 
theoretical data in section 4. Finally, we conclude and give an outlook in section 5. 

2. Brownian dynamics simulations 

The Brownian dynamics (BD) simulations are based on a finitedifference integration of 
the irreversible Langevin equations of motion [20, 211. If hydrodynamic interactions are 
neglected, the (threedimensional) particle positions r;. at a time t + A t  are gained from the 
old positions at time t as follows: 

where i = 1, ..., N labels the N particles, .$ is the solvent friction and is the total 
interparticle force on particle i derived from the Yukawa interaction (2). Furthermore, 
(hr).)~ is a random displacement due to solvent collisions, which is sampled from a Gaussian 
distribution of zero mean and variance 

This means that the motions of the particles for short times is diffusive, with the short- 
time diffusion constant DO related to the solvent friction via (1). The term DO defines the 
natural timescale rB = o’/Do and also provides the natural unit to measure the longtime 
self-diffusion coefficient D that is defined by 

1 
D = lim - W ( t )  

r-tm 6t (5) 

with W ( t )  being the mean-square displacement of one selected particle, usually called a 
tagged particle: 

where (. . .) is a canonical average. In the second equality in (6) we used the fact that in 
an equilibrium suspension all particles are equivalenr Actually, it is the second expression 
that is used in a simulation, as this gives much better statistics. Due to the interparticle 
interaction, D is smaller than &, in general. Alternatively, one can define D by the 
differential expression 

I d  D = lim - -W(f) .  
r-rm 6 dr (7) 
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We use a periodically repeated cubic simulational box of volume V with N = 500 particles 
and generate particle trajectories according to (3) with a sufficiently small timestep Af. The 
actual value of A I  depended on the softness of the potential; it was chosen between 0.0003r~ 
(for h = 0) and O.Oo0 01 re (for A -+ w). The starting positions were on an FCC lattice and 
the system was first equilibrated at high temperature and then gently cooled. During the 
simulation, the centre of mass of the system was fixed in order to avoid spurious drift of 
the finite system. After a long equilibration period (of at least 3 r ~ )  statistics were gathered 
(during a period of rz I ~ B )  and the timedependent mean-square displacement W(f) was 
calculated for a long time rL rz 4rB. Both expressions (5) and (7) were then used to get D,  
where the long-time limit is replaced by the value of the mean-square displacement at large 
finite time rL. It was found that IL was long enough to be very close to the long-time limit 
by checking that the two different expressions of the right-hand sides of (5) and (7) were 
equal at time IL. Different runs were done for fixed temperature T and varying particle 
density n = N / V .  

For the one-component plasma with neuiralizing homogeneous background (OCP), we 
use an Ewald summation in order to take the interaction of all periodically repeated images 
into account. For the hard-sphere case. the result depends very sensitively on the magnitude 
of the time-step [IO]. Therefore, the time-step has to be chosen to be much smaller for hard 
repulsions than for sofrer interactions. 

In two spatial dimensions all the equations are unchanged except that there are now 
two-dimensional position vectors r&). and six in the right-hand sides of (4). (5). (7) has 
to be replaced by four. The simulations in two dimensions are quite similar. We now use 
a periodically square box with N = 529 particles and start from a simple square Iattice. 
Again, the long-time diffusion coefficient is calculated using both expressions (5) and (7). 
and for long times agreement is found For Brownian hard discs, similar simulation studies 
have recently been performed by S c h M  and Sillescu [ZZ]. 
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3. Theories 

Recently a new formalism for the calculation of the self-diffusion coefficient has been 
derived [13]. It is based on ideas used earlier in kinetic theories of dense fluids [23]. 
These ideas were applied to analyze the many-body Smoluchowski equation describing the 
Brownian dynamics of a colloidal suspension. Here we first review the main points of the 
new approach and state its results. Then we move on to review briefly some older theories 
for the self-diffusion coefficient 

The main idea of 1131 is to express the self-diffusion coefficient D in terms of the 
fiction coefficient f ~ :  

The friction coefficient is the long-wavelength long-time limit of the friction kernel B(r; I): 

which is defined through the constitutive relation between the current of the tagged particle 
and the tagged-pdcle density gradient: 

(10) 
a 
ar i w d f t [  dT’t(T - r‘; I - I’)j[T’; I‘) = -kBT-n,(T: I). 
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Here n,  is the tagged-particle density and j is the current of the tagged particle. The current 
is &fined through the continuity equation 

(1 1) 
a a .  
-fls(T; I )  = --J(T; t ) .  
at a r  

Note that the right-hand si& of (IO) is the osmotic (or entropic) force. 
Finally, to calculate the friction kemel one uses the following expression for the current, 

which can be derived from the first equation of the BBGKY-like hierarchy for the many- 
particle Smoluchowski equation [13,24]: 

' J  (12) 
a 

89.1 &I 
 TI; t )  = -Do-~, (TI ;  t) + - dTzFizSflz(T1, Tz; t ) .  

Here Flz is the force on the particle at TI exerted by the particle at TZ, and 6n2 is the 
difference between the non-equilibrium pair distribution function and the local equilibrium 
pair distribution function (see [13] for details). The time evolution of 6nz is described by 
the following evolution equation, which can be derived from the second equation of the 
BBGKY-like hierarchy: 

Here g? is the equilibrium two-particle correlation function and 8n3 describes the dynamical 
three-particle correlations. 

To calculate the friction kemel, one now has to solve equation (13) with respect to the 
nonequilibrium distribution 6n2 ,  substitute the result into (12). rearrange terms containing 
the current, and compare with the definition of the friction kemel (9). Note that up to this 
point no approximations have been made. However, (13) is not closed, as it contains the 
three-particle correlations. 

The approach adopted in [13] was first, to keep only the two-particle dynamics, and 
second, to take into account the enhanced probability of binary encounters. With this aim 
in view, the threeparticle dynamical correlations Sn, were neglected completely, the third 
term at the right-hand si& was omitted, and the potential of the effective mean force 
Veff(rlz)  = -ksT loggy(r12) in the source tenn in (13) was replaced by its lowdensity 
limit. The friction coefficient obtained in this way was essentially the solvent friction plus 
the lowdensity correction renormalized by the pair correlation function: 

where & is an arbitrary unit vector and Qz denotes the two-particle Smoluchowski operator: 

Sa2 = Do- a2 +Do< + '(" - B ) f i 2 .  

at-: ar, eo at-, ar2 
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The approximations that lead to (14) are essentially the same as those underlying the 
Enskog kinetic theory of a hard-sphere fluid [23] and its generalizations to continuous 
potentials [E]. Therefore the theory of [I31 is referred to as the Enskog theory for the 
self-diffusion coefficient of colloidal suspensions. 

It was shown in 1131 that for a hard-sphere suspension the Enskog theory includes in an 
exact way short-time contributions to the friction kernel. For a general continuous potential 
this is no longer true. For soft potentials the Enskog theory greatly overestimates short- 
time contributions. Therefore we propose a minimal modification of the Enskog theory that 
includes the exact short-time behaviour of the friction kernel for continuous potentials. To 
this end, we again keep the two-particle dynamics (we neglect the thresparticle term of 
(13) and omit the third term in the right-hand side), but we also keep the full potential of 
the effective mean force in the source term in (13). In this way, we obtain the following 
expression for the friction coefficient: 

The modification of the Enskog thmy  seems to be inconsistent, since we effectively include 
some three-particle processes. However, we found no other way to include the proper short- 
time behaviour of the friction kernel and to keep the two-particle Smoluchowski dynamics 
Qz. Moreover, it will be shown in section 4 that results obtained from (16) are in excellent 
agreement with the simulation results for soft potentials. Note that the modified Enskog 
expression (16) was also proposed in [XI. 

There are two other theories available for the calculation of the self-diffusion coefficient. 
Historically the first one was the mcde-coupliig theory, which was developed by Mori and 
Zwanzig [26] and applied to colloids by Hess and Klein [19]. Its starting point is the exact 
expression for the tagged-particle intermediate scattering function. This expression is then 
analyzed and approximated using the ideas bomwed from the mode-coupling theories of 
simple liquids. The final result is a non-linear self-consistent equation for the scattdng 
function. This equation also involves the so-called collective scattering function, for which 
another self-consistent equation is written down. Since non-linear self-consistent equations 
are difficult to solve one usually approximates them further, inhoducing short-time limits 
of the scattering functions into friction kernels (for details see. [19] and references cited 
therein). In this way one obtains the following expression for the friction coefficient: 

Here S(k)  is the static structure factor 

S ( k )  = 1 + n dre-ik"(g:(r) - 1). 1 
Another theory has been proposed by Medina-Noyola [27]. It is based on an analysis 

of the generalized Langevin equation describing the coupled motion of the tagged particle 
and the surrounding colloidal suspension. The final result for the fiction coefficient is 
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It tums out that numerically the expressions (17) and (18) are very close (see, for 
example, [I41 figure I). Therefore, in the next section, we compare the Brownian dynamics 
simulation results with the theoretical predictions based on (14). (16) and (18). With the 
same basic ideas, all theories can also be constructed in two spatial dimensions, where the 
resulting expressions are quite similar. 

An intriguing question concems an analogy between the dynamics of colloidal and 
atomic fluids. Recently, de Schepper and co-workers [28] proposed such a mapping between 
these two different kinds of dynamics by which they got a simple and reasonably accurate 
expression for D. There are, however, both similarities and differences in the long-time 
correlation for Newtonian and Brownian dynamics [5.21]. Therefore, in this paper, we 
prefer to start directly from Smoluchowski rather than from Liouville dynamics. 

Table 1. Simulation data for the ratio DI& for ddimensional Yultawa system CharaMn ‘zed 
by a sneening parameter A, tempffd(ure tsTJUo and number dewily nud. The ocp (A = 0) 
is chawtaized by the plasm coupling parameter C .I = m for hard discs. The number in 
brackets gives the error in DIDO of the last digit For comparison, the amplitude g, of tk first 
maximum of the equilibrium pair correlation hrnction g? is also shown. 

d .I h T J U o  nud gm DIDO 
3 8  I 0.2 1.13 0.88(4) 
3 8  1 0.3 1.21 0.77(2) 
3 8  1 0.4 1.31 0.68(2) 
3 8  1 0.6 1.53 ossiij 
3 8  1 0.8 1.76 0.41(1) 
3 8  1 
3 8  1 
3 8  1 
3 3 0.8 
3 3 0.8 
3 3 0.8 
3 3 0.8 
3 3 0.8 
3 3 0.8 
3 0 -  
3 0 -  
3 0 -  
3 0 -  
3 0 -  
2 m -  
2 m -  
2 m -  
2 8  1 
2 8  1 
2 8  1 
2 8  1 
2 3 0.8 
2 3 0.8 
2 3 0.8 
2 3 0.8 

1.0 
1.2 
1.4 
0.2 
0.6 
1.0 
I .6 
3.0 
9.0 
r = i  
r = IO 
r =20 
r =60 
r = 120 
0.255 
0.462 
0.694 
0.2 
0.4 
0.6 
1. 
0.1 
0.2 
0.5 
1.0 

2.00 
2.23 
2.46 
1.05 
1.20 
1.29 
1.39 
1.51 
1.69 
I .w 
1.14 
1.31 
1.74 
2.17 
1.35 
2.M 
3.65 
1.14 
1.36 
1.70 
270 
1.01 
1.05 
I .26 
1.56 

0.332(9) 
0.223(8) 
0.145(8) 
0.81(2) 
0.63(1) 
0.56(1) 
0.49( I) 
0.39(1) 
0.301(8) 
0.92(2) 
0.6-40) 
0.53(1) 
032(1) 
0.177(8) 
0.67(3) 
0.47(3) 
0.27(2) 
0.77(4) 
0.56(2) 
0.4M)(9) 
0.165(9) 
0.83(3) 
0.72(3) 
0.52(1) 
0.370(8) 

2 3 0.8 20 1.96 0.264(6\ 
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4. Results 

Results of the BD simulations and the different theoretical expressions for the long-time 
self-diffusion coefficient D are summarized in table 1 and are also graphically displayed 
in figures 1-7. We fixed the potential parameters and the temperature, and varied the 
particle number density, which is conveniently measured in units of U bemg the 
length scale of the Yukawa potential (2). The temperahue, on the other hand, is measured 
by the dimensionless number kBT/Uo where U0 is the energy scale in (2). To calculate 
explicitly the theoretical expressions, we used the pair distribution function obtained f” 
the simulation. In this way we do not introduce additional approximations, thus only testing 
the dynamical theory. 

H Lowen and G Szamel 

1.0 

3 no 3 no 

Fwre 1. Selfdiffusion coefficient divided by ifs low- 
density limit D/Do a$ a function of the reduced density 
mu3 for a lhree-dimensional hard-sphere suspension U 

denoting the hard-spkre diameter. Circles: Bmwnian 
dynamics data of [IO]: full curve: Enskag theory (14); 
broken curve: modified Enskog theory (16): chain 
curve: theory of Medina-Noyola (IS). 

p%uw 2. Self-diffusion mefficient divided by ils low- 
density limit D/& as 8 function of the reduced density 
nu’ for 8 lh”e . nsional Y h w a  suspension Pa- 
rameters of the Yukawa potentiak h = 8. h T / U o  = 1. 
Circles: Bmwnian dynamics result% c~osses: Enskog 
Wry (14): squaw: modified Enskog Wry (1% ui- 
angles: Wry of Medina-Noyola (18). Curves serve 
only as g u i h  to ulc eyes. the cplculations were 
performed at Lhe data points. 

First, in figure 1. we recapitulate well known results for hard spheres. The predictions 
of the Enskog theory seem to describe the simulation results best. Note that the theory due 
to Medina-Noyola, which is also quite reasonable, has a wrong lowdensity behaviour. The 
modified Enskog theory gives for the hard-sphere potential a trivial lowdensity expression 
for the friction coefficient, = CO( I+xna’/3) and, correspondingly. the results for the self- 
diffusion are also not accurate. As a ulmment we remark that, for hard-sphere suspensions. 
the corrections to the Eriskog theory have been calculated [14], which significantly improve 
agreement with the simulation for the densities up to no3 % 0.8. 

In figure 2, we compare the simulations and the theoretical predictions for a continuous 
but quite steep potential, A = 8, kBT/Uo = 1. Here none of the theories seems to describe 
the simulation results correctly. Note that for not too high densities the modified Enskog 
theory is quite close to the simulation data. 

Figure 3 contains the simulation data and theoretical predictions for a rather soft 
potential, A = 3, ~ B T / U O  = 0.8. Here it is found that the modified Enskog theory agrees 
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3 no 

Fwre 3. Same as figure 2: but now for a softer 
Yukawa potential with paramem A = 3, kBT/UO = 
0.8. 

r 

Flgure 4. Selfdiffusion coefficient divided by its 
lowdeiiity limit D/Da as a hmtion of the plasma 
parameter r for a ti” ’ nsional Brownian om- 
component-plarma Circles: Brownian dynamics re- 
SUI& squares: modified Enskog theory (16); triangles: 
uleoy of Medina-Noyola (18); rrosses: modified En- 
skog h r y  with a saeening length equal to the wnic- 
sphere radius. 

.o - 
.OO .20 .40 .60 .80 

nu 2 

Figure 5. Same as figure 1. but now for Brownian hard 
discs, U denoting the harddisc diameter. 

2 nu 

Figure 6. Same as figure 2, but now for a nvo- 
dimensional Yukawasuspsion with paramem A = 8, 
bT/Uo = I .  

surprisingly well with the simulation results. The Enskog thmry greatly underestimates the 
diffusion coefficient whereas the theory of Medina-Noyola give results 50-100% too high. 
The failure of the Enskog theory might have been expected. It does not incorporate the 
coITect short-time behaviour of the friction kemel. Actually for this very soft potential it 
greatly overestimates the short-time contributions to the friction coefficient. This will be 
even more visible for the os, where the friction coefficient predicted by the Enskog theory 
diverges. 

In figure 4, we compare the simulations and the theoretical predictions for the os. Here, 
instead of the density, we use the dimensionless plasma coupling constant r = Uou/ukBT, 
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1.0 

.a 

.6 
no 

e .4 
.. 

.2 

.O .o .5 1.0 1.5 2.0 

Figure 7. Same as figure 3, but now for a hw-dimensional Yukawa suspension wilh paramelen 
1=3,ksT/Uo=Q.8 .  

where a denotes the ion-sphere radius a = ( 4 ~ / 3 n ) ’ / ~  [ZS]. The long-range character of the 
Coulomb potential causes some additional problems. The Enskog expression for the friction 
coefficient is divergent due to the slow decay of the potential, whereas the expression of 
the modified theory is finite. However, it overestimates the friction and correspondingly 
underestimates the self-diffusion coefficient. The theory of Medina-Noyola, on the other 
hand, overestimates the self-diffusion coefficient. Note that the Coulomb potential in 
the two-particle Smoluchowski operator is not screened, whereas one expects that some 
screening should take place in a plasma If we introduce somewhat arbiharily a screening 
length equal to the ionic-sphere radius into the modified Enskog expression, the results 
agree quite well with the simulation data. This is shown in figure 4. 

Finally, in figures 5-7, we compare the simulations and the theoretical predictions for 
the two-dimensional suspensions. In particular, we choose a hard disc, a steep and a soft 
Yukawa potential. We basically find the same scenario as in the three-dimensional case. 
For hard discs (figure 5). the Enskog theory is now clearly superior to Medina-Noyola’s 
expression (compared to the case of hard spheres). Again, for the soft Yukawa potential, 
the modified Enskog theory describes the simulation data reasonably well. 

5. Conclusions 

We have presented simulation data for the long-time self-diffusion coefficient of a Brownian 
Yukawa system in three and two dimensions. It was found that the selfdiffusion coefficient 
changes much less with increasing density for softer interactions. However it scales roughly 
with the first maximum gm of the pair distribution g? which is also displayed in table 1. 

The simulation data have been compared with different theories that need static data as 
an input. In general, dynamical quantities depend much mnre sensitively on the nature of 
the interparticle forces than the smcrural properties. Thus it is generally more difficult to 
predict the self-diffusion coefficient accurately by a theory that is based on a static input. It 
was found that for a hard-sphere interaction the Enskog theory is the most accurate. For a 
strongly screened Coulomb potential essentially no theory describes the simulation data. The 
modified Enskog theory works very well for moderately screened Coulomb potentials. In 
conclusion, we think that the important requirement for the dynamical theory is to describe 
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the short-time behaviour of the friction kernel correctly. The actual time evolution of the 
kernel can be approximated by that given by the two-particle dynamics. An important 
exception Seems to be the Brownian OCP where one has to introduce a screening of the bare 
Coulomb interaction. The qualitative features of the different theories do not change in the 
case of two spatial dimensions. 

It would be instructive to compare these results with recent measurements on well 
characterized dilute charged suspensions [3]. For the experimental system, hydrodynamic 
interactions can be safely ignored, and the interaction may be modelled by a Yukawa 
potential according to the DLVO or Poisson-Bolt” cell model [7]. The thermodynamic 
parameters and the parameters characterizing the Yukawa potential that are accessible in 
the experiment of [3] are in the region of relatively weak screening where the modified 
Enskog theay works well. A systematic comparison of the experimental data with theory 
and simulation is in progress [30]. For quantitative comparison, effects of polydispersity in 
the effective charge [31] may also become relevant and should be discussed, too. We further 
remark that the case ofa (quasi)-two-dimensional Brownian liquid confined between parallel 
plates, is particularly interesting since real space image methods can be used to probe directly 
the diffusive dynamics of the colloidal particles [22]. We believe that a careful comparison 
between experiments and simulations for long-time self-diffusion may lead to definitive 
information on the interparticle forces determining, for instance, the effective charge used 
in the Yukawa model. 

Another remark concerns the role of hydrodynamic interactions. Although a complete 
theoretical treatment for selfdiffusion is still missing, one may simply map the full dynamics 
of the system onto that of a reference system without hydrodynamic interactions by using 
a scaling of the diffusion coefiicient proposed by Medina-Noyola 1271. In this sense, all 
our results should also have relevance in the high screening region, where hydrodynamic 
interactions become important for concentrated suspensions. 

As a final interesting question we note that one may try to establish a connection 
between the static Hansen-Verlet freezing rule [32] and the dynamical freezing criterion 
(DIDO = 0.1) which was put forward in [5]. A possible theoretical connection could be 
based on the dynamical theories we discussed here, which relate DIDO to the pair structure. 
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